
Classification Upto Class:

General criteria used for Classification of Invertebrates:

- Whether the body is Symmetrical (radial/bilateral) or Asymmetrical
- II. Whether diploblast or triploblast
- III. Whether Acoelomate, pseudocoelom or coelom
- IV. Segmentation present or absent
- V. Protostome or deuterostome
- VI. **Molting (Ecdysozoa**) or trochophore/veliger larvae (Lophotrochozoa)
- VII. Distinctive organs (lophophore, radula, water vascular system, cnidae, comb rows)
- VIII. System traits (type of nephridia, circulatory system, respiratory organs)
- IX. Cuticle and skeleton type (spicules, chitin, CaCO₃)
- X. Molecular phylogeny compared to morphology

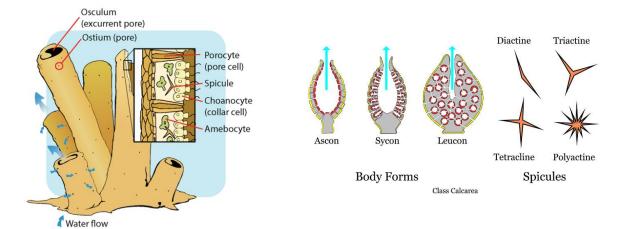

Phylum	General Features	Classes		
Porifera (Sponges)	 Multicellular, asymmetrical choanocytes for feeding, no tissues. 	I. Calcarea II. Hexactinellida III. Demospongiae		
Cnidaria (Cnidarians; e.g., jellyfish, corals)	 Diploblastic; cnidocytes for stinging polyp/medusa forms 	I. Anthozoa (Sea anemones, corals; no medusa stage) II. Scyphozoa (True jellyfish; dominant medusa) III. Cubozoa (Box jellyfish; complex eyes) IV Hydrozoa (Hydroids; colonial polyps)		
Ctenophora (Comb jellies)	 Diploblastic; biradial symmetry comb plates (ctenes) for locomotion 	 I. Tentaculata (With tentacles; e.g., Pleurobrachia) II Nuda (No tentacles; e.g., Beroida) 		

Fig: overview of Porifera, Cnidaria and Ctenophora classification upto class

Phylum	General Features	Classes		
Platyhelminthes (Flatworms)	 Acoelomate, triploblastic; dorsoventrally flattened; hermaphroditic; 	I. Turbellaria (Free-living; e.g., Planaria) II. Monogenea (Ectoparasites on fish; e.g., Dactylogyrus) III. Trematoda (Flukes; endoparasites; e.g., Schistosoma) IV Cestoda (Tapeworms; no		
Nemathelminthes (Roundworms)	 Pseudocoelomate; cylindrical body; complete gut; many free- living/parasitic. 	digestive system; e.g., Taenia) As per classical taxonomy: I. Nematoda II. Rotifera III. Gastroticha IV. Kinorhyncha V. Nematomorpha The above are treated as phylum in modern classification.		

Fig: overview of Platyhelminthes and Nemathelminthes classification upto class

1. Phylum Porifera: The Sponges

Skeleton and Classification

Class	Skeleton	Body/organization	Canal type	Examples
Calcarea	Calcium carbonate spicules	Small, marine, all grades	Asconoid/ Syconoid/ Leuconoid	Sycon, Leucosolenia
Hexactinellida	Siliceous 6-rayed (hexactine) spicules	Syncytial trabecular tissue; deep-sea	Syconoid/ Leuconoid	Euplectella
Demospongiae	Spongin and silica (non-hexactine)	Largest group; diverse forms	Leuconoid dominant	Spongilla, Euspongia

Classification of Porifera is based primarily on the composition and structure of the skeletal system, resulting in three major classes:

Amebocyte William Osculum

I. Class Calcarea (Calcispongiae) comprises calcareous sponges exclusively inhabiting shallow marine waters in all oceans at depths less than 100 meters. These sponges are typically small (approximately 10 cm in height), vase or cylinder-shaped, and possess radial symmetry. Their skeleton consists of free calcareous spicules (minute crystalline structures composed primarily of calcium carbonate (CaCO₃)). Calcareous spicules are differentiated into larger megascleres and smaller microscleres, which can be monaxon (single axis), triaxon (three axes), or tetraxon (four axes) types. The canal system within Calcarea can be asconoid, syconoid, or leuconoid in organization. Examples include Sycon, Leucosolenia, and Grantia.

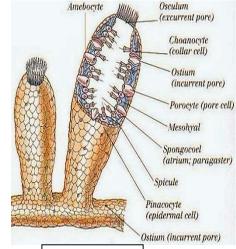
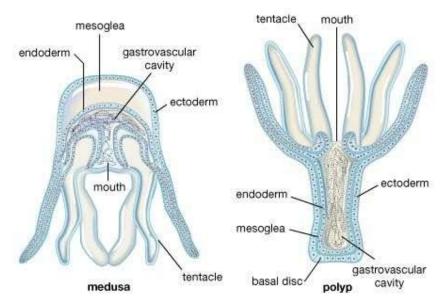


Fig.: Sycon sp.

II. Class Hexactinellida

(Hyalospongiae) consists of glass sponges occurring exclusively in deep marine environments. These sponges possess distinctive siliceous spicules with six radiating rays (hexactinellid means "six-rayed"), giving them their common name of "glass sponges" due to their transparent, glass-like appearance. Unlike calcareous sponges, hexactinellids are typically solitary individuals and maintain radial symmetry.


Fig.: Euplectella aspergillum

III. **Class Demospongiae** represents the largest and most diverse sponge class, inhabiting both marine and freshwater environments. The skeleton of demosponges consists of either spongin fibers (collagenous connective tissue), siliceous spicules of monaxon or tetraxon type (never six-rayed), or combinations of both; some demosponges lack a skeleton entirely. Demosponges typically display asymmetrical body shape with irregular form, complicated canal systems, and total absence of the spongocoel. Examples include Spongilla (freshwater), Cliona, and Chalina.

Fig: Cliona sp.

2. Phylum Cnidaria: Jellyfish, Corals, Sea Anemones, and Hydra

Classification of Cnidaria

Class	Life-form dominance	Main characters	Reproduction	Examples
Hydrozoa	Polyp dominant; medusa small	Medusa with velum;gonads ectodermal	Alternation polyps/medusae; colonies common	Hydra, Obelia
Scyphozoa ("true jellies")	Medusa dominant	No velum;thick mesoglea;gonads endodermal	Polyp strobilation to ephyrae	Aurelia
Cubozoa	Medusa	 Cube-shaped bell, velarium, complex rhopalia eyes; strong swimmers 	Small benthic polyp; potent venom	Chironex
Anthozoa	Polyp only	 Mesenteries/septa; siphonoglyph; hexamerous/octamerous plans 	Sexual and asexual budding; reefs	Sea anemones, corals

Cnidarians are traditionally divided into four classes based on morphological characteristics, life cycle patterns, and reproductive strategies:

I. Class Hydrozoa comprises approximately 3,700 species distinguished by their complex life cycles involving both polyp and medusa stages, though medusae develop from buds rather than from strobilation. Most hydrozoans are marine colonial organisms in which multiple polyps form interconnected colonies through living tissue called the coenosarc. Colonial polyps frequently exhibit polymorphism: different specialized morphologies performing different functions such as feeding, reproduction, or defense. The medusa stage is

Fig. : Aequorea sp.

typically the sexually reproducing form, producing gametes from ectodermal (rather than endodermal) tissue.

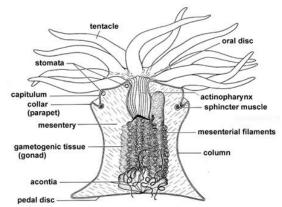

II. Class Scyphozoa consists primarily of free-swimming jellyfish, representing the sexually mature medusa form as the dominant stage, with the polyp stage typically much reduced or absent. Scyphozoans are exclusively marine and vary tremendously in size, from tiny species to giant jellyfish reaching several meters in diameter.

Fig: Aurelia sp.

III. Class Anthozoa includes sea anemones, corals, and sea pens, all characterized by the complete absence of a medusa stage and the dominance of the polyp form. Most anthozoans are colonial, and many form the ecological foundation of coral reef ecosystems. The internal gastrovascular cavity is divided by radial septa (partitions), and gonads develop from endodermal tissue.

Fig.: Metridium sp.

IV. **Class Cubozoa** comprises the venomous box jellyfish and sea wasps (*Chironex*, *Carukia*, and related genera), characterized by cubic-shaped bells, advanced visual systems with true eyes, and highly potent venomous nematocysts capable of causing serious harm to humans.

Fig: Carybdea sp.

3. Phylum Ctenophora: Comb Jellies

Classification and Diversity

Class	Distinct Character	Feeding	Examples
Tentaculata	Tentacles present with colloblasts; retract into sheaths	capture plankton	Pleurobrachia, Cydippea
Nuda (Beroida)	No tentacles	Broad mouth	Beroe

The classification of Ctenophora is primarily based on presence or absence of tentacles (the tentacular apparatus).

I. Class Tentaculata comprises the comb jellies that possess tentacles, at least at some point during their life cycle. These tentacles are typically long and feathery and are armed with specialized sticky cells called colloblasts, which they use to trap and ensnare planktonic prey. The tentacles can usually be retracted into sheaths on the body. This class is very diverse and includes species with a variety of body forms, from the spherical "sea gooseberries" (*Pleurobrachia*) to species with large oral lobes (*Mnemiopsis*) and flattened, ribbon-like forms (*Cestum*).

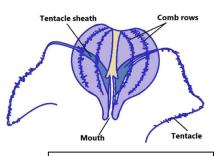


Fig: Pleurobrachia sp.

II. Class Nuda, also known as Atentaculata, includes comb jellies that completely lack tentacles at all stages of life. To feed, they have evolved a very different strategy: they possess a massive, cavernous mouth and a muscular pharynx that can be expanded to swallow prey whole. Members of this class, such as the common genus *Beroe*, are active predators that feed almost exclusively on other comb jellies and gelatinous zooplankton, engulfing them with their wide mouths.

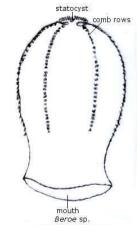
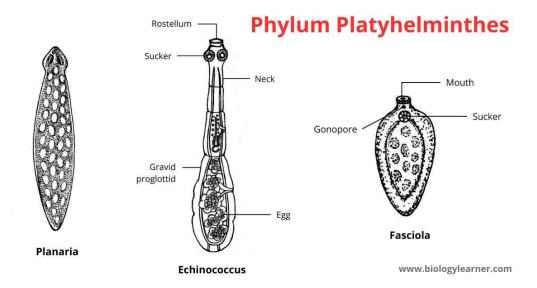
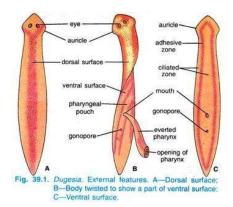



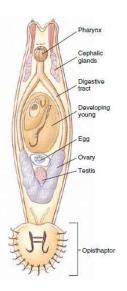
Fig: Beroe sp.

4. Phylum Platyhelminthes: Flatworms

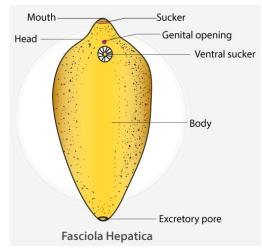


Classification of Platyhelminthes

Class	Habitat	Gut & attachment	Distinctive Life-cycle	Examples
Turbellaria	> Free-living; > ciliated epidermis (rhabdites)	Gastrovascular cavityno anus	Mostly direct; regeneration strong	Planaria, Dugesia
Monogenea	Ectoparasites (mostly fish)	Opisthaptor with hooks/clamps	Direct (single-host)	Gyrodactylus
Trematoda (Digenea)	Endoparasites;syncytial tegument	Oral and ventral suckers	 Indirect (2 or more hosts); snail first intermediate; miracidium to cercaria to metacercaria 	Fasciola, Schistosoma
Cestoda	Endoparasites; no gut	Scolex with suckers and hooksstrobila of proglottids	Indirect;nutrientabsorption viamicrotriches	Taenia, Echinococcus


Platyhelminthes are traditionally divided into four classes based on habitat, morphology, and life cycle characteristics:

I. Class Turbellaria comprises mostly free-living flatworms inhabiting marine, freshwater, or moist terrestrial environments, though some species are epiparasitic or endoparasitic. The ventral epidermis is typically ciliated, facilitating locomotion through water or across substrates. Many turbellarians demonstrate remarkable regeneration abilities, capable of developing complete bodies from body fragments. Examples include *Dugesia* (common planarian) and marine polyclads.



II. Class Monogenea consists of ectoparasites, primarily of fish, with relatively simple life cycles lacking intermediate hosts. Larvae are free-swimming and attach directly to fish to begin transformation into parasitic adults. These worms may produce enzymes that digest host tissues or simply graze on surface mucus and skin particles.

Fig: Gyrodactylus sp

III. Class Trematoda comprises internal parasites, primarily of mollusks and various vertebrates including humans, characterized by highly complex life cycles. Trematodes are generally hermaphroditic except for blood flukes (*Schistosoma* species), which are dioecious. These parasites possess evolved suckers for attachment and undergo alternating asexual and sexual reproduction in different hosts. The life cycle typically involves miracidium larvae, sporocyst and redia stages within intermediate snail hosts, cercariae larvae, and adult forms in vertebrate definitive hosts. Examples include *Fasciola hepatica* (liver fluke) and *Schistosoma* species (blood flukes) that cause serious human diseases.

IV. Class Cestoda comprises ribbon-like tapeworms that are exclusively internal parasites, mostly of vertebrates. These distinctive parasites lack entire digestive systems, instead absorbing nutrients directly across their body wall from the host's intestinal contents. Tapeworms feature a characteristic body structure consisting of a scolex (anterior attachment organ with sucker), a neck, and numerous proglottids (segments), each potentially containing both male and female reproductive organs. The entire anterior portion remains attached to the host's intestinal epithelium while proglottids detach and are excreted with host feces, dispersing eggs. Examples include Taenia solium (pork tapeworm) and Diphyllobothrium (fish tapeworm).

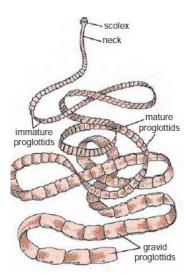
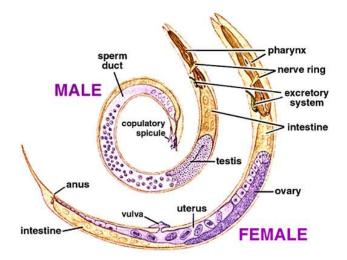
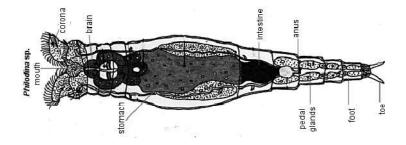
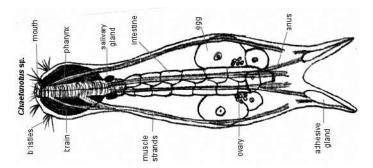


Fig. Taenia solium (pork tapeworm)

5. Phylum Nemathelminthes (Aschelminthes): Roundworms and Related Organisms

Classification of Nemathelminthes


Fig: Ascaris lumbricoides (Nematodes)

The phylum Nemathelminthes is traditionally divided into five classes (as per classical taxonomy) based on morphological characteristics:

- I. Class Nematoda (the roundworms) comprises endoparasites and free-living worms with bilaterally symmetrical vermiform bodies covered by complex cuticles. Sexes are separate. Examples include Ascaris lumbricoides (large intestinal roundworm in humans), Ancylostoma duodenale (hookworm), and Enterobius vermicularis (pinworm).
- II. Class Rotifera consists of microscopic aquatic organisms with separate sexes and a specialized wheel-like feeding apparatus. Two protonephridia tubes function in excretion. Examples include Brachionus, Colotheca, and Philodina.

III. Class Gastrotricha comprises minute free-living aquatic organisms with either separate or hermaphroditic sexes. Excretory organs may be present or absent. Examples include Urodasys, Macrodasys, and Chaetonotus.

IV. Class Kinorhyncha features minute microscopic marine organisms with internally segmented bodies and separate sexes. Development is indirect, proceeding through larval forms. Examples include *Echinoderes* and *Centroderes*.

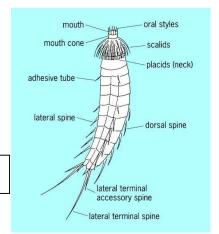


Fig: Centroderes sp.

V. **Class Nematomorpha** comprises long slender unsegmented worms commonly called hair worms. Sexes are separate. Examples include *Gordius* and *Nectonema*.

Fig.: a cooked tanner crab with a coiled-up Nectonema worm inside of it.