
5th SEM MINOR

1. Structure of Anther

- Part of the stamen (male reproductive organ in flowers).
- Bilobed and dithecous (each lobe has two thecae).

Structure of stamen

• Tetrasporangiate: Each anther has four pollen sacs (microsporangia).

a. Anther Wall Layers (from outside to inside):

- 1. Epidermis Protective outer layer.
- 2. Endothecium Helps in dehiscence (releasing of pollen).
- 3. Middle Layers 1–3 layers; temporary.
- 4. Tapetum Innermost layer; nourishes developing pollen; metabolically active.

b. Microsporangium

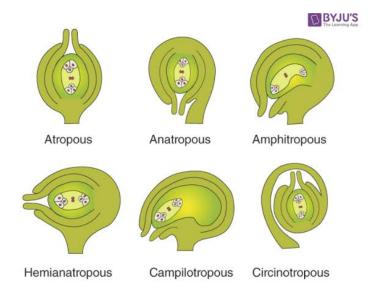
- Central fertile tissue = Sporogenous tissue (produces microspore mother cells).
- Microspore mother cells undergo meiosis \rightarrow form tetrads of microspores.

2. Structure of Pollen Grain

- Haploid, formed by meiosis of microspore mother cells.
- Surrounded by:
 - Exine Outer tough layer with sporopollenin (chemically inert).
 - Intine Inner layer of cellulose and pectin.

Contains:

- Vegetative cell Large, metabolically active.
- Generative cell Divides to form two male gametes.


Vacuole Generative nucleus Germ Pore Vegetative nucleus

Structure and Types of Ovules

1. Structure of Ovule (Megasporangium)

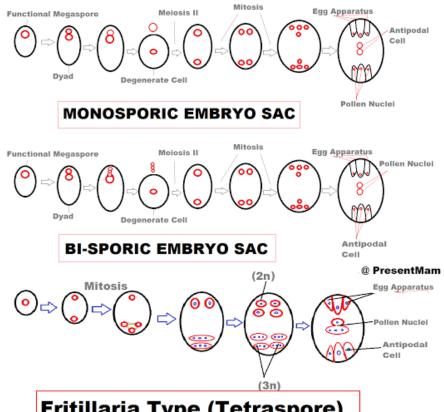
- Located inside the ovary of the carpel.
- Main parts:
 - Funicle Stalk attaching ovule to placenta.
 - Hilum Junction between ovule and funicle.
 - Integuments Protective layers (1 or 2) covering the ovule.
 - Micropyle Opening in integuments for pollen tube entry.
 - Nucellus Parenchymatous tissue that surrounds embryo sac.
 - Embryo sac Female gametophyte.

2. Types of Ovules (based on orientation of micropyle, chalaza, and funicle):

Туре	Description	Diagram orientation
Orthotropous	Micropyle, chalaza, and funicle in straight line	Straight
Anatropous	Ovule inverted; micropyle close to funicle (most common)	Curved downward
Campylotropou s	Body of ovule curved; embryo sac slightly curved	Bean-shaped
Amphitropous	Both ovule and embryo sac curved	Horse-shoe shaped
Hemianatropou s	Ovule is at right angle to funicle	Horizontal
Circinotropous	Ovule turns 360° during development	Spiral

Types of Embryo Sacs (Female Gametophyte)

1. Monosporic Type (most common – e.g., *Polygonum* type):


- Only one megaspore (from a tetrad) develops into embryo sac.
- Undergoes three mitotic divisions \rightarrow 8 nuclei.
- Arrangement:
 - 3 antipodals at chalazal end.
 - 2 synergids + 1 egg cell at micropyle (forms egg apparatus).
 - \circ 2 polar nuclei in center \rightarrow fuse to form secondary nucleus.

2. Bisporic Type:

- Two nuclei participate in embryo sac formation (e.g., Allium type).
- One mitotic division less than monosporic type.
- Example: Only 2 of the 4 megaspores fuse and develop.

3. Tetrasporic Type:

- All four megaspore nuclei contribute.
- No wall formation between megaspores → multinucleate cell.
- Example: *Adoxa*, *Peperomia*.
- Many variations depending on fusion and arrangement of nuclei (e.g., Fritillaria type).

Fritillaria Type (Tetraspore)